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Summary. Guided ion beam kinetic energy thresholds in the ion-molecule reactions 
M ÷ + H2 ~ MH ÷ + H, where M ÷ is a closed-shell atomic ion B +, A1 ÷, or Ga +, 
were found to exceed by 0.4 to ca. 5 eV the thermodynamic energy requirements (or 
the theoretically computed barrier heights) for these reactions. In addition, the 
formation of MD ÷ occurs at a significantly lower threshold than MH ÷ when M + 
reacts with HD. Moreover, the measured reaction cross-sections for the production 
of MH ÷ or MD ÷ product ions are very small (10-17 to 10 -20 cm2), being largest for 
B ÷ and smallest for Ga +. A previous paper from this group proposed that coUi- 
sional-to-internal energy transfer is the rate-limiting step for this class of reactions. It 
also suggested, based on a dynamical resonance picture, that collisions occurring at 
or near C2v symmetry are more effective than other collisions even though 
C2v geometries provide no lower potential energy barriers than others. By examining 
the collision paths characteristic of flux early in the bimolecular collision and 
searching for geometries along such paths where collisional-to-internal energy trans- 
fer is optimal, our earlier efforts predicted reaction thresholds in reasonable agree- 
ment with the (previously perplexing) experimental data. In the present work, we 
introduce a model Hamiltonian whose classical and quantum dynamics we apply to 
the M ÷ + H2, D2, HD reactive collisions. We calculate the classical collisional-to- 
internal energy transfer cross-sections and find energy transfer thresholds that 
resemble the experimental reaction thresholds but whose isotopic mass trends are 
not entirely consistent with experiment. We then use a Green function method and 
a local quadratic approximation to the potential surface to obtain analytical expres- 
sions for the isotopic mass dependences of the collisional-to-vibrational energy 
transfer and for the subsequent fragmentation of the three-atom system. Finally, we 
analyze the origin of the threshold energy asymmetry in the M ÷ + HD reactions. 

Key words: Collisional energy transfer - Bimolecular ion-molecule dynamics 

1 Introduction 

Guided ion beam measurements of the cross-sections [1-1 for the production 
of MH + and MD + product ions in reactions of closed shell 1S B +, AI +, and Ga + 
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Fig. 1. Cross-sections for reactions for 
B + (1S) (a) and A1 + (IS) (b) as 
a function of kinetic energy in the 
center-of-mass frame (lower scale) and 
laboratory frame (upper scale). Arrows 
indicate the thermodynamic 
thresholds for formation of the X 2,~ + 
and A2//states of the products 1 

1 + ions (denoted M +) with closed-shell Eg H2, D 2 and H D  displayed features that 
required further interpretation: 

• The apparent thresholds (i.e., the collision kinetic energies where product M H  ÷ 
or M D  ÷ ions are first formed) exceed the minimum thermodynamic energy 
requirements by significant amounts  (e.g., by up to 5 eV for Ga + ). Two examples of  
these data are shown in Fig. 1. 
• In experiments with HD,  M D  ÷ formation displays a lower energy threshold than 
M H  + (see Fig. 1.) 
• The cross-sections are small (10-17 to 10 -20 cm2), and are smallest for Ga ÷ and 
largest for B +. 

Impulsive, statistical, and spectator-stripper models I-2] do not succeed in 
rationalizing the unexpectedly high threshold energies or the magnitudes of the 
M D + / M H  + threshold energy asymmetries. For example, an impulsive model  
decomposes  the collision kinetic energy T for the M + H D  case into components  
TMn ~ ½ T and TMD = -:3 T that give the kinetic energy of M ÷ relative to the H and 
D atoms, respectively. Such a model  then predicts that M D  ÷ formation can occur 
at a lower total collision energy T because 2 of this energy is available to the M - D  
coordinate. In particular, the model  predicts that the threshold kinetic energy for 
M D  ÷ formation should be (1)/(2) = ½ that for M H  ÷ formation in the M + + H D  
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Fig. 2. a C2v symmetry contour plot of the (1A,) ground state energy of B + + H2. The R ( the distance 
of B ÷ to the center of H-H) and r (H-H distance) axes are in Angstroms, and the contours are spaced by 
10.0 kcal/mol, b C2v symmetry contour plot of the (1A,) ground state energy of AI + + H2. The R (the 
distance of A1 + to the center of H-H) and r (H-H distance) axes are in Angstroms, and the contours are 
spaced by 10.6 kcal/mol, e Czv symmetry contour plot of the (~A,) ground state energy of Ga + + H2. 
The R (distance of Ga ÷ to the center of H-H) and r (H-H distance) axes are in/%ngstroms, and the 
contours are spaced by 10.4 kcal/mol. In a-c, the symbol X is used to denote the location of the barrier, 
and Y is used to denote the region of strong mode mixing [3] 

case; this quantitative prediction is not seen in the experimental data. In contrast, 
a previous work [3] by one of the authors and collaborators proposed that  
entrance-channel transfer of M + - H 2  relative translational energy to H2 vibra- 
tional energy is the rate-limiting step in this class of reactions. 

By considering collision paths characteristic of early reactant flux, in which the 
H2, D2 or H D  internuclear distance is essentially undisturbed from its equilibrium 
value (because the experiments involve room temperature hydrogen gas), and 
searching, along these paths, for geometries at which energy transfer is predicted by 
a resonance condition to be optimal, Ref. [3"1 made predictions of reaction thre- 
sholds reasonably in agreement with the experimental findings. I t  is the purpose of 
the present work to make more quantitative the energy-transfer rate-determin- 
ing-step picture and to carry out classical simulations and quantal dynamical 
analyses on a model potential surface fit to the ab initio data of Ref. [3] to gain 
further insight into this class of reactions. 

We approach the problem in the following manner: 

1. We fit the same ab initio C 2 v  and near-C2v potential energy surfaces employed in 
Ref. I-3] (see Fig. 2) to extract strength and range parameters characteristic of the 
repulsive port ion of the M ÷ - H 2  surface implicated in Ref. I-3] as the regions near 
which dynamical resonances can occur. We use the undisturbed H - H  potential to 
characterize the H2, D2, or H D  vibration (because Ref. 1-3"1 showed the dynamical 
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resonances to occur at geometries where one of the local normal mode frequencies 
was nearly equal to that of the isolated hydrogenic molecule). And we use limited 
locally computed ab initio estimates of the coupling strength between the H - H  and 
M +-H2 coordinates. 
2. We employ the potentials created in step 1 to introduce a two-dimensional 
model Hamiltonian to describe the collisional energy transfer entrance-channel 
part of the reaction. 
3. We use an adaptive-step-size fifth-order Runge-Kutta  method [4] to propagate 
classical trajectories and obtain the cross-section for the T - V  energy transfer. 
Trends in the T - V  energy transfer onsets correlate with the experimental thre- 
sholds, and v = 0 ~ v = 1 excitation is seen to dominate near the threshold. 
However, the isotopic mass effects displayed in the classical trajectory data are not 
entirely consistent with the experimental results (which suggests that there is more 
to the reaction cross-section than T - V  energy transfer). 
4. We also analyze the quantum transition probabilities for the T - V  process using 
a Green function method, to further quantify the origin of the high energy 
threshold and to achieve analytical expressions for the threshold energies that more 
clearly display the isotopic masses and potential surface parameters. 
5. Finally, we analyze energy transfer for the HD case, and offer an explanation for 
the origin of the asymmetry in the MD + and MH + thresholds. 

In Section 2 we develop the model Hamiltonian and describe the results of 
classical trajectory simulations using it. In Section 3, we describe the quantum 
propagator approach and make connection with the mode resonance picture of 
Ref. E3]. We also use classical coupled-oscillator concepts to address the threshold 
energy asymmetry in the M + + HD cases. Section 4 contains an overview of our 
findings. 

2. The model Hamiltonian and classical trajectories 

2.1 The model potential 

Based on the evidence detailed in Ref. [3], we assume that near-C2v collision 
geometries, with the H2 moiety near its equilibrium internuclear distance, are 
optimally effective at allowing T - V  energy transfer to occur. Of course, collisions 
occur at many orientations and many impact parameters that must be averaged 
over to compute the cross-section. However we expect from the earlier work that 
near-C2v geometries, which necessarily have small impact parameters, will domi- 
nate the T - V  process because only near such geometries does dynamical resonance 
occur between the M +-H2 collisional and H - H  vibrational modes. We therefore 
introduce two coordinates x and y to describe the BC + A collision as shown 
in Fig. 3. 

The M ÷ + H - H  internal potentials energy U is thus assumed to be a function 
of these two coordinates and the following two-dimensional model Hamiltonian is 
introduced: 

h ~2 h ~2 
H = 2rfi Ox 2 2# 63y 2 -I'- U(x ,  y). 

As explained in Sect. 1, we choose to express U(x, y) in terms of a M+-H2 repul- 
sion which we describe as v exp ( -  ax), the unperturbed H - H  potential 
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Fig. 3. Coordinates for near C2v collisions (A denotes the M + 
ion and BC the H2, D2, or HD) 
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Fig. 4a. BH + surface fit, where y = 1 .405011a .u .  = 0 . 7 4 3 5 A  a n d  1 .75a .u .  < x  < 3 .5a .u . ,  

E = 39.173 e x p  ( - 2 .81145x);  R 2 = 0.936; b. A1H + surface fit, where y = 1.405011 a.u. - -  0 .7435 ,~ and 
2.0 a.u.  < x < 3.5 a.u. ,  y = 27.271 e x p (  - 2 .091806x) ;  R 2 = 0.993; e G a H ~ -  surface fit, rn2 = 1.405011 

a.u.  = 0 .7435 A a n d  1.70 a.u.  < x < 4.7 a.u. ,  E = 14.205exp ( -  1.72899x);  R 2 =  0.999; d B H D  + 

surface fit where y = 1.405011 a.u.  = 0 .7435  A a n d  1.75 a.u.  < x < 3.5 a.u.,  E = 37.182 exp  ( - 2 .81399 

x); R 2 = 0.933 

½ kBc(Y - -  y e q )  2, plus a coupling which we embody in a b parameter computed as 
detailed below: 

U ( x ,  y )  = v exp( - a x  - b ( y  - Yeq)) + ½ kBc(Y  - -  yeq)2. 

In this Hamiltonian,  y is the distance between B and C, and x is the distance 
between A and the center of mass of  BC. 

The potential parameters a and v are obtained by fitting the ab  in i t io  computed 
data of Ref. [3-] (plus additional data obtained by us) at several values of x, but with 
y = y~q, to the v e x p ( -  ax )  functional form. °Specifically, data in the narrow 
entrance channels of Fig. 2 (r ~ 0.7 A, R > 1.0 A) are used. Examples of such fits 
are shown in Fig. 4. 
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Fig. 5a. A b  initio (squares) and least-squares fit (solid line) energy for BH + as a function of vibrational 
coordinate y, x = 2.50 Bohr, y* = 1.460773 Bohr, k = 0.369333 a.u., E - E,ib = v exp( -- a x  - -  b 

(y - y*)); ln(E - Evib) = -- 2.5809 -- 0.31132y; R 2 = 0.847; b A b  initio (squares) and least-squares fit 
(solid line) energy for AIH2 + as a function of vibrational coordinate y, x = 2.75 Bohr, y* = 1.404289 
Bohr, k = 0.369333 a.u., E -- E,ib = v exp ( -- a x  - -  b ( y  - y*)); In(E - Ev~b) = -- 2.1422 -- 0.17095y; 
R 2 = 0.861; e A b  initio (squares) and least-squares fit (solid line) energy for G a H ;  as a function of 
vibrational coordinate y, x = 3.00Bohr, y * =  1.414951 Bohr, k = 0.369333 a.u., E-Ev~b = exp 
( - -  a x  - -  b * ( y  - y*)); ln(E - Ev~b) = -- 2.2229 -- 0.1894@; R 2 = 0.859 

T h e  b p a r a m e t e r  desc r ibes  t he  c o u p l i n g  b e t w e e n  t h e  co l l i s ion  (x) a n d  v ib ra -  
t i o n a l  (y) c o o r d i n a t e s .  Here ,  XA is a r e p r e s e n t a t i v e  v a l u e  of  x in the  r e g i o n  w h e r e  t he  
m o d e l  o f  Ref. [3]  sugges ts  e n e r g y  t rans fe r  s h o u l d  o c c u r  (see Fig .  2), U ( X A ,  y) is 
c o m p u t e d  a t  severa l  va lues  o f y  ( r ang ing  ca. + 0.4 B o h r  f r o m  Yen) in a fully a b  i n i t i o  

m a n n e r .  T h e  q u a n t i t y  In [U(XA, y) - - 1  kBc (Y -Yeq) 2"] is t hen  p l o t t e d  vs. y. Ac-  
c o r d i n g  to  o u r  m o d e l  po ten t i a l ,  this  l o g a r i t h m i c  func t i on  s h o u l d  r e d u c e  to  
In v - a X A  - -  b ( y  - -  yoq), so t he  s lope  o f  such  a p lo t  s h o u l d  g ive  b. E x a m p l e s  o f  such  
p lo t s  a re  g iven  in Fig .  5. 

T h e  va lues  o f  v, a a n d  b thus  o b t a i n e d  a n d  used  for  the  r eac t i ons  s tud ied  he re  
a re  g iven  in T a b l e  1. 

T h e  a p p r o p r i a t e  effect ive masses  a p p e a r i n g  in the  x a n d  y k ine t i c  ene rgy  
exp re s s ions  a r e  

r~ = m A ( m B  + mc) 

mA + mB + mc 
a n d  

mB mc 
P 

m B  " k m  c ' 
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Table 1. The v e x p ( -  a x -  b ( y -  Yeq)) portion of the 
U(x, y) potentials used for different M +, v is in Hartree, 
a and b are in Bohr -1  

B + 39.173 exp( -- 2.81145x -- 0.31132(y - Yeq)) 
AI + 27.271 exp( - 2.09181x - 0.17095(y - y~q)) 
Ga  ÷ 14.205 exp( - 1.72899x - 0.18944(y - yeq)) 

Table 2. Values for the  y-mode frequency and reduced 
mass  # 

System /~ (a.u.) mr (a.u.) 

H2 918 0.0200 (0.54 eV) 
H D  1224 0.0174 (0.47 eV) 
D2 1836 0.0142 (0.39 eV) 

Table 3. Collisional mass  rfi, and mass-weighted repulsion (F) and coupling (K) 
parameters 

r~b hF2K 2 
System ff~ (a.u.) r (a.u.) K 2 . . . .  (10 -3) 

/z a o~ r 

BH~ 3107 0.0504 0.0415 5.3 
B H D  + 4328 0.0427 0.0434 4.5 
BD + 5386 0.0383 0.0360 3.7 
A1H + 3419 0.0358 0.0249 1.6 
A1HD 4958 0.0297 0.0270 1.4 
AID+ 6397 0.0261 0.0233 1.1 
GaH~- 3570 0.0289 0.0467 1.9 
G a H D  + 5282 0.0238 0.0518 1.7 
G a D +  6947 0.0207 0.0454 1.4 

which, for the cases at hand, are listed in Tables 2 and 3. Notice that in the limit 
where mA ~> (rob + mc) (e.g., for Ga  + but less so for B+), rh ~ mB + mc, so both 
# and rh depend only on the masses of the B and C atoms, not on the mass of the 
metal  ion. 

2.2 Mass weighted coordinates 

The above Hamil tonian can be rewritten in terms of mass-weighted coordinates 

X = xx/-~ and Y = (y - Yeq)x/~ as 

h 2 ~2 h E t92 
H =  2 0 X  2 2 0 y 2 + V t X ,  y ) + ~ o ) r y 2  ~ 1 

where V(X,  Y) = v exp( -- F ( X  -- K Y ) ) ,  

a 
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and 

- -  s o  F K  = 
a 

are the mass-weighted versions of the range (a) and coupling (b) parameters, and 

cot2 k~c 
# 

is the square of the Y-mode harmonic frequency. 
For  the ion-molecule collisions under study here, the values of v, F 2, K 2, 

F2K 2, and co r are given in Tables 1-3. 
The mass-weighted coordinates are introduced here and used in subsequent 

classical and quantal calculations because the findings of Ref. [3] cause us to 
emphasize the local frequencies of motion along x and y in anticipation of the 
dynamical resonances postulated earlier. Such local frequencies are obtained by 
using mass-weighted coordinates in terms of which the kinetic energy is isotropic 
along all coordinates and hence the potential energy contains all mass and surface 
slope and curvature characteristics. 

2.3 Classical trajectories and cross-section evaluation 

We use a classical trajectory method and our model Hamiltonian to compute the 
classical vibrational excitation cross-section [5] as 

~ 2~ 2~ Y+ [G( Y; v, J )  dy] 1 dr/ d e  
= o  = o  = o  = o  = , _  

x [½ sin OdO] [2rcbdb]pa(Vx, b, v, J, y, O, ¢, r/), 

where PA is the probability of translation to vibration energy transfer, vx is the 
asymptotic relative speed of A with respect to BC (½ fftv 2 = Eoonisio.), the angles 
¢ and 0 define the BC initial orientation, r/defines the BC rotation plane, b is the 
impact parameter, v and J are the initial vibrational and rotational quantum 
numbers of BC, and G(Y; v, J) is the distribution function for the Y coordinate 
which, of course, depends on v and J. In the cases at hand, we take v = J = 0 and 
we approximate G in terms of the v = 0 harmonic eigenfunction for the unper- 
turbed Y coordinate [9] G(Y; v, J)  = Iq~o(Y)l 2. 

For  our classical simulations, we focus on near-Czv collisions which therefore 
have small impact parameters, so we approximate PA as 

( 2 )  itraj(vx, y) 
PA(vx, b, v, J, y, 0, ¢, t/) = 6(rcbZ)6(tl)47t6(¢)6 0 - 6(v)6(J) ntraj ' 

where ntraj is the total number of trajectories employed and itraj(v~, y) = 1 or 
0 depending on whether the particular collision has caused vibrational excitation 
or not. 

Of course, to determine whether or not a collision gave rise to vibrational 
excitation, we had to propagate the corresponding classical trajectory. The clas- 
sical Hamiltonian in mass-weighted coordinates 

n 1 2 1 2 = -~Px + ~Pr  + ½co~ y2  nt - v exp( - F(X  - K Y)) 
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can be used to obtain the following classical equations of motion: 

= --=OH Px ,  
OPx 

Px- aH 

OX 
= F . v  exp( -- F ( X  - K Y ) ) ,  

~r _ O H  _ Pr,  
OPy 

[ ~r  - a H 
OY 

r K ' v  e x p (  - F(X - K Y ) )  - rn~, Y. 

We thus have a set of four coupled first-order ordinary differential equa- 
tions which we chose to solve using a fifth-order Runge-Kutta  scheme monitor- 
ing the local truncation error to ensure accuracy and to adjust the time step-size. 
We used the Numerical Recipes subroutines odeint, rkqs, rkck [4] to meet 
these needs. 

For  all trajectories, we set the t = 0 values of the coordinates and momenta as 
follows: 

• x = 10 Bohr, thus X = xw/~  (this begins all trajectories where the ion-molecule 
potential is negligible). 
• Y and PY are taken to be consistent I-9] with zero-point vibrational energy being 

~ Pr  + ½ ,oo2 Y 2 = ½ hogr , and Y is allowed to in the Hz (or D2 or HD) molecule 1 2 
vary between the two classical turning points with I~o( Y)I 2 used as a probability 
to generate a series of initial conditions. For  each such value of Y, both positive 
and negative PY are used. 
• The asymptotic (incoming) momentum along X is determined by 

P x  = - -  N/2Eeollision • 
• The time duration of each trajectory is chosen to be tf = -3 (X /P x ) t=o .  If 
there were no interaction other than a specular reflection at X = 0, the time for 
the x coordinate to return to x = 10 Bohr would be - 2(X/Px)t=o. Because of 
the repulsive interaction potential, the actual time needed to return to x = 10 Bohr 
will be less than this estimate. In practice, we found that by taking 
tf = - 3(X/Px)t=o,  x had returned to and passed 10 Bohrs for all our trajector- 
ies and the total energy was found to be conserved within 10 -4 Hartrees (i.e., 
to better than 0.1%). 

For  each collision energy, a total of 200 initial (Y, Pr)  conditions were used. At 
selected energies, 400 such trajectories were employed, but the vibration excitation 
cross-section changed little compared to the 200-trajectory results, so the smaller 
number was used in all the remaining cases. 

In computing the cross-section, itraj(vx, Y ) is defined in terms of the number of 
trajectories that have 1 2 1 2 y 2 ~pr + ~ cog > hcor at tf; this is our criterion for defining 
the Y-mode to be in v = 1 or higher. To probe excitation into the v -- 1 state alone, 

>1 ~Pr itraj(vx, Y) is taken to be the number of trajectories that have 2hogr 1 2 
1 2 y 2  

q- 7 roy > hfO r a t  tf. 
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2.4 Classical trajectory results 

Figure 6a-6i shows the cross-sections for T - V  energy transfer for MH~-, MD + 
and M H D ~  for M = B, A1, and Ga. These classically evaluated cross-sections 
show several noteworthy aspects: 

1. For  B +, A1 +, and Ga ÷ the cross-sections are indeed small (ca. 10- 28 cm 2) and in 
the range of what is seen experimentally. However, the experimental trend that the 
cross-section is largest for B ÷ and smallest for Ga ÷ does not appear dearly in the 
classical results. 
2. The T - V  excitation energy thresholds for B +, A1 ÷, and Ga + are "sharp" and do 
indeed greatly exceed the reaction endothermicities (which are 2.6 eV for B ÷ + H2, 
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3.9 eV for A1 ÷ + H2, 4.1 eV for Ga + + H2) and lie in the neighborhoods of 
3eV for B + +  (D2, HD, H2), 6eV for A I + + ( D 2 ,  HD, H2), and 9eV for 
Ga ÷ + (D2, HD, H2), not unlike the experimental reactive thresholds. How- 
ever, our classical trajectories' prediction (see Fig. 6) that the threshold energies 
should vary in the order MD~- < M H D  + ~ MH ~ is not seen experimentally 
(where MH + ~ MD+).  
3. In all M + + H D  cases, there is, of course, a single classical T - V  excitation 
threshold energy as computed in our model. Experimentally, MD + is formed at 
lower collision energies than MH + when M + reacts with HD, so this feature of 
the reactive cross-sections cannot be addressed in terms of T - V  energy transfer 
within our simple classical two-mode (X, Y) model. The extension of our analysis 
to treat the M + + H D  cases in terms of three modes is given in Sect. 3.3. 
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3. Quantum treatment 

Although the classical trajectory numerical simulation data show similarities to 
what is observed experimentally, as pointed out above, not all features are ac- 
counted for. In search of reasons underlying the remaining discrepancies and tO 
gain further insight into why the T - V  thresholds occur where they do and are as 
sharp as they are, we use analytical quantum tools on the above model Hamil- 
tonian. In particular, we do so to pursue a framework in terms of which we can 
better explain the various mass dependencies of the reaction cross-sections. Moti- 
vated by these desires and again keeping in mind the success of the dynamical 
resonance model introduced in Ref. ['3], we decided to pursue an analytically 
soluble, rather than numerical, refinement of the model Hamiltonian used thus far. 

In Ref. [,3], we made use of local harmonic approximations to describe both the 
H - H  (i.e., Y-mode) and M+-H2 (i.e., X-mode) dependencies of the potential 
V(X,  Y). Such an approach allowed us to specify, in terms of atomic masses and 
potential surface characteristics, the dynamical resonance conditions that permit 
T - V  energy transfer and,  by assumption, subsequent chemical reaction to occur. 

In this paper, we extend the ideas from Ref. [3] and use locally defined 
harmonic oscillator eigenfunctions as a basis for both the X and Y coordinates. This 
may limit us to treating the early part of the T - V  energy transfer (low Y-mode 
excitation) since, as shown in Figs. 2 and 5, the actual potential energy surface is 
harmonic only in a range of Y values (ca. ___ 0.4 Bohr) near where T - V  energy 
transfer is expected to occur. However, this approximation is appropriate if the Ha 
(Dz or HD) is initially vibrationally cold (as it is in the experiments) and if the 
rate-limiting step for inducing chemical reaction is the entrance-channel T - V  
transfer. 

3.1 Local quadratic approximation to V 

Focusing on the repulsive X-dependence characterizing the entrance-valley (see 
Fig. 2) part of V, we define 

F ( X )  = V(X,  Y = O) = v exp( - F X ) ,  

and approximate F ( X )  by a local quadratic potential, F(X), expanded in the 
neighborhood of a point Xo in the region where the energy transfer is expected to 
occur from Ref. [-3]. Explicitly, 

/OEFI "~ X 
if(X) = Fo + A(X-  Xo) + ½~-~_ X=Xo)(_ - Xo) 2 

or, equivalently, 

i f (X)  = Fo 1 -- + ~ m x ( X  -- XA) 2, 

where the parameters in ff are chosen to make 

a2F azff 

0X 2 - aX 2 

and 

F(X) = F(X) 
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at Xo, thereby giving 

and 

Fo = F ( X o )  

O) 2 = F 2 Fo. 

The choice of the A parameter, or equivalently of the position X A where the local 
harmonic approximation has its minimum, 

A Z 
XA = X°  0) 2 X°  F '  

where 

F A  A 

Z = ~ = F F o '  

implies a choice of the derivative of P(X) at Xo. 
In an independent work [6], it has been observed that equating the fitting (P) 

and actual (F) potentials at two points often produces a more useful fit than is 
obtained by equating the fitting and actual potentials and their first derivatives at 
a single point. Thus, it is not obvious that one wishes to choose A (i.e., Z) to cause 
the gradients of F and P to be a equal at Xo. 

3.1.1 Fi t t ingF to F at two points. In terms of the parameters entering into our local 
quadratic function if, fitting ff to F both at Xo and at XA produces the following: 

Fo = F ( X o )  

and 

ff(XA) = F o ( 1 - Z - - ~ 2 ) = F ( X A ) = e Z F o .  

The second result given above provides an equation e z = (1 - -  Z 2 / 2 )  that Z (or, 
equivalently, the slope parameter A = F F o Z )  must obey. Solutions to this equa- 
tion are (i) the trivial solution, Z = 0 (which does not produce a second point at 
which F = F since then XA = Xo), and (ii) Z = -1.176002, which we found 
numerically. The value Z = - 1.176002 ... is used throughout the remainder of 
this paper for reasons detailed shortly. 

3.1.2 Fitting ff  and F and first derivatives o f  ff and F at one point. If, alternatively, 
we require the slope of F to match that of F at the single point Xo, we find 

Fo = F ( X o )  

and 

A = - FFo .  

The latter result implies Z = - 1.0 rather than Z = - 1.176002. 
A comparison among the actual F potential and local quadratic approxima- 

tions ff corresponding to various values of Z shows that Z = - 1.176002 ... 
produces a potential that gives a fit satisfactory over a larger interval of X. On this 
basis, we have chosen the local quadratic potential provided by Z = - 1.76002 
throughout this work. 
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In the next section of this paper, we demonstrate that a resonance energy 
condition is met when co x and coy are related by cox -~ 1.53coy. Thus, given the 
coy characteristic of Hz, D2, or HD, we use this identity to compute cox- We then 
find the point Xo at which the model potential F = v exp( - F X )  has co2 as its 
second derivative: Xo = - ( l /F)  In (vF 2/co2). Knowing Xo we can evaluate F (Xo), 
The second "contact point" XA is then given as XA = X o -  Z/F, where 
Z = - 1.176002, and the value of F(XA) is obtained as Foe z. As also shown in the 
next section, the point XA is where our model suggests efficient energy transfer is to 
occur and F(XA) determines the reaction threshold. 

This procedure then gives our optimal quadratic fitting function 
ff Fo(1 - Z2/2) 1 2 1 co2[X = 31- 2 c o X (  x - -  X A )  2 = F(XA) + ~ x~ - -  X A )  2 in the neighbor- 
hood of XA. It should be noted that this function matches the exponential F at 
Xo and XA and matches the second derivative of F at Xo but not at XA; the second 
derivative of ff a t  XA is co2 while that of F at XA is eZco 2 (i.e., at XA the local 

harmonic frequency of the actual F function is x / ~  = 0.85 of its value at Xo, which 
we express a s  co(XA) = 0.85coX). 

3.2 Resonances in first-order solution of  the Schr6dinoer equation 

Treating V(X, Y) - if(X), which includes X-Y-mode coupling and 
non-harmonic X-character of V as a perturbation A V, we now express the 

1 2 2 quantum dynamics on the full V(X,  Y )  + ~cor Y surface in terms of approximate 
1 2 y  2 fit potential surface. We begin by rewriting the dynamics on the F ( X )  + ~cor 

Schr6dinger equation for the two-dimensional Hamiltonian as 

{ h2 t~ 2 h2 t3 2 } 
- -  ~--~cox~ 2 ~y2 ~'2COYY ~(Q, Y) 2 ~Q2 -~- F ( X A )  - 1 2,-~2 1 2 2 _ g 

= -- A V(Q, Y)  tP(Q, Y),  

where 
Q = X  - X a  

is the displacement along the X coordinate from 
ff = F = FA, and near where 

1 ,2 ,'%2 
F ( O )  = FA + ~ x ~  • 

the point X A at which 

In terms of the displacement coordinates Q and Y, the perturbation occurring on 
the right side of the Schr6dinger equation is written as 

1 (_02/'~2 -- A V(Q, Y )  = if(Q) - V(X,  Y )  = FA + -~ x~  -- FA e-r(Q-Kr). 

The eigenvectors ~t'(Q, Y )  of the full Hamiltonian involving V(X,  Y)  can be 
expanded in terms of the eigenfunctions { # , ( Q ) # u ( Y ) }  of the left-hand side of the 
SchrSdinger equation as 

~(Q,Y) = ~ ~ ~,,(Q)~u(Y)C,,u, 
n=O M=0 

where 
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and 

= - - - - - ~ 1  (c°r'~ 1/4 exp ( ° Y y 2 ) H ~ ( y N / - ~ )  

are the conventional harmonic oscillator functions of Q and Y, and CnM are 
expansion coefficients. 

To model the entrance-channel initial state of the M+-H2 system, we specify 
the quantum number (I) for the Y-mode describing the H - H  vibration as well as 
a quantum number (i) relating to the initial energy content of the X-mode. These 
quantum numbers thus specify an initial (unperturbed) eigenvector ~pO(Q, y )  
~i(Q) ~I(Y), and an initial zeroth-order energy 

Ei°I = FA + hcox(i + 3) + hoy(I + 3). 

Because we wish to formulate solutions ~Y(Q, Y) in terms of a perturbation that 
induces transitions i, I --* n, M but not energy shifts, we add to both sides of the 
above Schr6dinger equation the average value A Vu of A V for the specific i, I initial 
state of interest: 

A Vu = <~,(Q)~I(Y)IA V(Q, Y)I~,(Q)~I(Y)>. 

It can be shown (using the expressions on p. 60 of Ref. [7]) that this average value 
can be expressed as follows: 

= + ~(~ + ½)hco~] - A Vix [FA 1 " 

- -  F A  e~r~/4°'" ~ (k!)2(i - -  k)! \2O)xJ J 
L k = 0  

× L e ~ / * ~ "  y~ (L!)2( I -L ) !  \ 2 ~  / J" 
L = O  

To clarify the physical content of this energy shift, expansions in powers of K 2 and 
FEK2/oy can be carried out (see Table 3, where it is shown that these parameters 
are < 1.0). The lowest-order terms thus obtained are: 

- A ~ ,  = & + ½hcox(i ÷ 3) 

[ ½F2-_ ½K~F=o~ ] - FA 1 + -~hcox( ,  + 3) q hcor(I + 1) + ... 

1 FA F 2  
' ~ ½ h ~ x ( i + ½ ) - l h o x ( i + ~ ) ( - - ~ x  ) 

1 FA Fz K z 
- -  ½ h ( s r ( I  + ~ )  co~, + "'" " 

Recalling that cox 2 = F 2 Fo and that FA/Fo = e z = 0.31 we find 

K2eZo)~ 
-- A Vu ~ ½ hcox(i + 3)(1 - e ~) -- ½hcoy(I + 3) co2 

So, the i, I diagonal element of A V produces a shift in the X-mode potential energy 
related to the change in the curvature along that mode from co~c at Xo to 
Co2(XA) = eZo 2 at XA. This diagonal element also involves a (smaller, because it is 
proportional to K 2) change in the Y-mode potential energy. 
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Defining the energy e relative to the bottom of the harmonic potential (FA) plus 
the "shift" induced by A Vu. 

e = E - - F A - A V  a. 

we can rewrite the SchrSdinger equation with a right-hand side that causes only 
transitions but no further shift in the initial state's energy: 

{ h2 0 2 h2 0 2 } 
- -  1 2 , ' ~ 2  1 2 2 

20Q2-t-~Ox~ 2 0 y 2  t -~orY --e ~(Q,Y) 

= (-- AV + A Vu) e(Q, Y). 

The Green function of the left-hand side of this Schrrdinger equation is 

~ 4"(Q)~'M(Y)g'*(Q')~I'~(Y') 
G(Q, Y; Q', Y') = ~' 

n=O M=O 
and the integral equation equivalent to the above Schrrdinger equation and its 
boundary conditions is 

~O(Q, y) + f dQ' dY'G(Q, Y; Q', Y')[A Va - A V](Q', Y') gS(Q,, y,). ~(Q, Y) 

Strong contributions to the above integral over Y' and Q' are expected whenever 
e approaches (n + ½)hox + (M + ½)hoy. 

The relative importance of each such "resonance" (i.e., each such n, M pair) is 
determined by the magnitude of the matrix elements ( ~ ,  ~MIA V[ ~i~i>, and the 
T-V excitations threshold is determined by the lowest value of E at which a strong 
resonance can occur. 

We know from our classical trajectory simulations that A v = 1 processes are 
dominant in the T-V excitation, especially near threshold, so we can anticipate 
that the first-order correction to ~o obtained as the first iterate of this integral 
equation, 

~I(Q, y)  = .(dQ' dY'G(Q, Y; Q', Y')[AV~, - A V](Q', y,)~O(Q,, y,), 

should embody the primary effects for our system in the threshold energy regime. 
Because our zeroth-order wave function is of the form 

7t°(Q, Y )=  ~(Q)~s(Y), 

with I = 0 (because the hydrogen molecules are initially vibrationally cold), the 
first-order wavefunction correction can be written explicitly as 

~.(Q)~M(Y) } 
g/*(Q' Y) = ~" (n + ½)hcox + (M + ½)hoot - e 

(n, M) # ( i , l )  

x {~-~-~ Ea,,,+ 2x/-~n - 1) + 6.,,_=x/(n + 1)(n + 2)-16M,, 
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min(/,n) n[i[ (2COX y 1 

j=o j!(n--j)!(i . j ) !  

mintS,.> M!I! ( 2~. Vl~ 

× ,=oE j ! ( u  _ J ) ! (1 -  Jl! ]J" 

The resonance condition relating cox and col, outlined in the preceding section is 
obtained by requiring that A v = i single-quantum T-V energy exchange be 
resonant for the i ,  0 ~- O, i process. It can be shown that the expectation value of 
the model Hamiltonian in our basis is 

E,u = <~,(Q)e~,(Y)IHI~,(Q)~,(Y)) 
= (M + ½)hCOy + -~(nX + ½)t~COx 

{ "  n! ChF2y~ 
+ FAe(-~r:/4~'-hr:K'/4°~') j~=o (n -- j)!( j !)  2 \2O)x,,# J 

{ u M! 
x L~__ o ( M - L ) ! ( L ! )  2 \  2COy ,] J" 

Thus 

and 

hE2, ~ 
EI,O = ½hoot + 3(1 + ½)hcox + FA et-~r2/4°~-hr~r~/4'°') 1 + -~x} 

hF2K2~ 
Eo, 1 = (1 + ½)hcor + ¼bOx + FA et-~r~/4°~-~r2r~/4°~') 1 + 2coy ]" 

The identity Elo = Eol can then be solved for COx in terms of COt, with the result 

COx 2 + (hF2/4COr)C 2 
~ ~ ~ = 1.53. 

COt 1 + e ~ 1 + e ~ 

Thus, optimal T-V energy transfer should occur at geometries where 
COx ~ 1.53COy, according to this model. In practice, this resonance condition directs 
us to seek regions of the potential surface (Xo) near which COx = 1.53COy. The 
repulsion energy Fo at this geometry then gives the surface's range parameter 
F = CO2/Fo, which allows the geometry XA = Xo + 1.176/F, where the local poten- 
tial surface curvature CO(Xa) = (0.85) (1.53) coy = 1.30coy, to be computed. 

The relation between the repulsion energy FA at XA and the threshold collision 
energy Ecollisio n necessary to achieve facile T-V energy transfer can be seen by 
examining the energy dependence of the multitude of terms contributing to 

1 (Q, y ) . in  particular, the denominator relating to the 0, 1 -~ 1, 0 process can be 
expressed in terms of the total collision energy E as 

( -¼hcox+~hcor+ FA 1 + ~ - - - / e x p  + - E .  
\4cox 4cot ) 
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Table 4. Values for the X-mode frequency, Fo, Fa, Xo, and XA 

2 
COx = 1 + e z COt Fo(a.u.) FA(a.u.) xo(Bohr) XA(Bohr) 

BH~- 0.0306 0.3686 0.1137 1.6596 2.0779 
(0.83 eV) (10.03 eV) (3.09 eV) (0.878 ,~) (1.099 ,~) 

BHD ÷ 0.0266 0.3881 0.1197 1.6413 2.0596 
(0.72 eV) (10.55 eV) (3.25 eV) (0.868 ,~) (1.090 A) 

BD + 0.0217 0.3210 0.0990 1.7088 2.1271 
(0.59 eV) (8.73 eV) (2.69 eV) (0.904 A) (1.126 ,~) 

AIH~ 0.0306 0.7306 0.2254 1.730 2.293 
(0.83 eV) (19.88 eV) (6.13 eV) (0.916 A) (1.213 ,~) 

A1HD + 0.0266 0.8021 0.2475 1.686 2.248 
(0.72 eV) (21.83 eV) (6.73 eV) (0.892 A) (1.189 ,~) 

AID~ 0.0217 0.6912 0.2133 1.757 2.319 
(0.59 eV) (18.81 eV) (5.80 eV) (0.930 ,~) (1.227 ,~) 

Gal l  + 0.0306 1.1211 0.3459 1.4686 2.1488 
(0.83 eV) (30.51 eV) (9.41 eV) (0.777 A) (1.137 ,~) 

GaHD + 0.0266 1.2491 0.3854 1.4061 2.0862 
(0.72 eV) (33.99 eV) (10.48 eV) (0.744 A) (1.104 ~,) 

GaD]  0.0217 1.0989 0.3390 1.480 2.1604 
(0.59 eV) (29.90 eV) (9.22 eV) (0.783 A) (1.143 ,~) 

Table 5. Comparison between our quantum and classical model predictions and those from the 
mass-weighted Hessian eigenvalues and experimental thresholds. All the energies are in eV, and all 
distances are in ,~ 

Species FA XA ECM R ..... [3] E . . . . .  1-3] A Ether 1-3"] Eex p I'3"] 

B ÷ + H H  3.09 1.10 >2.8 > 1.05 <3.9 2.6 3.3 _0.1 
B ÷ + HD 3.25 1.10 >2.4 > 1.00; MD <4.6 4.0 +0.2 

> 1.05; MH < 3.9 3.0 +__ 0.2 
B + + DD 2.69 1.13 > 2.4 > 1.05 < 3.9 3.3 __+ 0.1 
A1 ÷ + HH 6.13 1.21 > 5.1 > 1.22 < 6.4 6.6 + 0.2 
A1 + + HD 6.73 1.19 > 5.0 > 1.16; MD < 7.7 3.9 6.7 ___ 0.1 

> 1.22; MH < 6.4 4.7 __+ 0.1 
AI + + DD 5.80 1.23 > 4.4 > 1.22 < 6.4 6.6 + 0.1 
Ga ÷ + HH 9.41 1.14 > 5.6 > 1.21 < 7.4 NA 
Ga ÷ + HD 10.48 1.10 > 5.7 > 1.15; MD < 9.0 4.1 NA 

> 1.25; MH < 6.3 
Ga + + DD 9.22 1.14 > 5.0 > 1.21 < 7.4 8.5 + 0.5 

S ince  COx ~ 1.5 COy a n d  because  hff2/COx a n d  hff2K2/CO r are  ~ 1 (see Tab le s  3 
a n d  4), th is  d e n o m i n a t o r  will  b e c o m e  smal l  w h e n  E ~ FA. F o r  this  r eason ,  we can  
p r ed i c t  t h r e s h o l d  energ ies  o n c e  F(XA) is ob t a ined .  

F o r  all  o f  the  r eac t i ons  s tudied ,  o u r  p r i m a r y  f indings  (the p r e d i c t e d  t h r e s h o l d  
energ ies  FA) a re  s u m m a r i z e d  in T a b l e s  4 a n d  5 a n d  c o m p a r e d  in T a b l e  5 to  o u r  
c lass ica l  T - V  e n e r g y  t r ans fe r  onse t  (Eclass), t he  e x p e r i m e n t a l l y  o b s e r v e d  r e a c t i o n  
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threshold energies (Eexp) , the endothermicities (Ether), and the threshold predictions 
of our earlier works (E¢ .... ). 

Although our FA thresholds, which are based on using our model's prediction of 
T - V  energy transfer onset as the chemical reaction onset, display the general 
trends of the experimental thresholds they still are not in quantitative agreement 
and they do not differentiate between MD + and MH + thresholds in the HD case. 

3.3 Asymmetry in the M D + / M H  + thresholds 

Once  collisional energy has been deposited into the B-C vibrational motion, the 
possibility of forming MH ÷ or MD ÷ product ions is assumed to be non-negligible 
in our model. For  M + + H2 or M + + D2 collisions, only MH + or MD + respec- 
tively, can be formed. However, in the M + + HD case, a new issue arises; it remains 
to be explained why MD + is formed at (significantly) lower collision energies 
than M H  +. 

We begin our analysis of this aspect of the reaction by introducing the following 
three-atom classical Hamiltonian: 

H = T + U ,  

where the kinetic energy is written in terms of the three masses and velocities as 

T 1 .2  1 .2  1 "2 
= ~ m A r A  + -~mBrB + -~mcrc 

and the internal potential energy is assumed to be locally represented as a sum of 
quadratic functions of the three interatomic distances 

_ e q , E + ½ k g a ( r g  eq 2 eq 2 U = ½ kBc(ra -- rc rBc) - -  r a  - -  rAB)  + ½ k g c ( r A  - -  r c  - -  rAC)  • 

We next transform to a coordinate system involving the center of mass coordi- 
nate of the three atoms rcu and two relative position vectors x and y as shown 
in Fig. 7. 

Expressing T and U in terms of these three new vector coordinates, we obtain 

1 .2 T = ½nS~ 2 + ½ p.#2 + ~Mr~M, 

U ½kBc(y eq,2 __ l~ _ r A c  , = --rBc)  + ½kAs _~By_r~AqB + ½kAc +~ccY eq 

where the effective masses n~ and # are as employed earlier in this paper and 
M = mA +mB + me. Now introducing mass-weighted coordinates 

Y =  x/~(Y - Yeq), 

X = v / ~ ( x  - Xeq), 

where 

and 

Yeq -~- 

xo~ = tAB mB Bc = r~nc + - - r ~ q ,  
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Fig. 7. Internal coordinate system 

we are able to write H in a manner reminiscent of the Hamiltonian used earlier in 
Sect. 2, except that X and Y are vectors in a plane. 

1 ,2 T = ½2 2 -(- ½ t 2 + -~ MreM, 

S l _ _ 2 T r 2  - -  1 2 - - 2  = ~ w r x  + ~ w ~ a  - 6 X . Y .  

Clearly, the center of mass coordinate propagates independently, so it can be 
removed from further consideration. The art and Wx frequencies, which need not be 
identical to the Ogx and mr used earlier in this paper, are expressed in terms of the 
force constant parameters defining U and the pertinent masses as follows: 

T,, 

and the parameter 6 governing the strength of the X and ¥ coupling is given by 

\rob mc / 

In the M + + Hz and M + + D2 cases, the f parameter vanishes. 
We can rewrite the potential as a quadratic form 

v(x ,  r) = (x, r) a 

2 

involving a matrix 

whose eigenvalues are 

where 

__a 
2 

' ~ & ) ~ s ,  o~ ~ = ~(w,~ + 

s = 1 ~ / ( w ~  - -  wr2) 2 + 462.  
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The corresponding two eigenvectors of the above matrix allow the normal mode 
displacement vectors of the coupled system to be written as 

The AB and AC interatomic distances can be written in terms of X and Y as 

where 

and 

Then using the above expressions for the eigenmodes, these same interatomic 
distances can be rewritten as 

In terms of the r/_+ vectors, the Hamiltonian becomes 

In the remaining portion of this analysis, we proceed as follows: 

(i) We assume that once the total collision energy E reaches the range F(XA) where 
appreciable T - V  energy transfer begins, the subsequent dynamical evolution of the 
three-atom system is best represented in terms of time evolution of the local normal 

modes (i/_+ ). 
(ii) We partition the total energy E in excess of F(XA) between the two normal 
modes E = F(XA) -t- E+ + E_,  with E+ = (½ ~2 + ½ 092 r/2 ) and E-  = (½ ~2 + 
½ 09 2 I/2 ) describing the energy content of the two modes. 
(iii) We then use equipartition I-8] of the excess energy (e.g., assuming adequate 
time to permit appreciable randomization of the energy E -- F(XA) in excess of the 
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lowest threshold) to relate the mean square A-B and A-C interatomic displace- 
ments (RA2B) and (R2c),  to Q/2 ) and hence to E - F(XA). 
(iv) We show that, in the BC = HD case, (R2H) is greater than ( R ] o )  for any 
E > F(XA). This observation is used to infer that a lower collision energy is 
required to eject the H atom (thus leaving AD +) from this energized three-atom 
complex. Hence the threshold for MD + formation should occur at lower total 
energies than that for MH + formations. 

1. H2 andD2 cases. Let us first consider the M + + H2 and M + + Dz cases where 
ms = mc = mn for H2 and ms = me = 2mn for D2, and for which 6 = 0, allowing 
considerable simplification in the above expressions. In particular, now 

and 

(x) 
t/+ Y ' 

2k 
CO 2 - 

m 

c o 2 = ~ r  2 kBc ½k 
P 

\ RAcJ tl+ 

The average values of (R~B) and (R~c) can be expressed in terms of those 
of <t/+ ): 

1 2  1 
<R~B) = ~ Q / - )  2 V / ~  ( g _ . g + )  + (r/~), 

(R1c)  = l . Q / z - )  + < g - ' g + )  + (r/2+), 
m 

and ( t l - . q + )  = 0. 
From equipartition of energy 

1 (.02 ( / , ]2> = 1 E _  ~--- 1 h(D_/,]e_ff, 

where q~f are quantum numbers describing the energy and momentum content of 
the two local normal modes (specifically, the energy content above the "bottom" 
F(XA) of the local harmonic potential). We thus obtain 

1 1 eff + l q ~ f  
<g s> = <g c> ,7- + h o; 

m 

Since kAB = kAC = k we can rewrite these results as 
hn°_ ff f 
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For H2 and D2, # = ½ran and /~ = mn, respectively, and n~ = mA(m B -4-mc) / 
(mA + ms + mc) ~ 2mn and n~ = 4mH, respectively. Hence for H2 

h.°_ '` f i h . ~ '  

(RJal) - ~ + 8~/(k + k~c)mH' 

while for D2 

hrl(  f hrl~ t 

(RID) = 8X//~H + 8X/( k + kBC)mH" 

Thus for any given energy E in excess F(XA) characterized by ~ff,  (R2n) will be 
larger than (R2D). 

Recall that our classical trajectory simulations showed somewhat lower T - V  
energy transfer thresholds for  M + + D2 than for M + + H2, whereas the experi- 
mental reaction thresholds seem to be much closer for D2 and H2. The results of the 
preceding paragraph imply that, although M + + D2 collisions may lead to T - V  
excitation at lower E, it will require more excess energy (i.e., higher ~/~f) to cause 
(R2D) to exceed a "critical bond breaking" distance. For M + + H2, T - V  excita- 
tion requires more collision energy, but for (R2H) to then exceed the critical value, 
less excess energy (i.e., smaller r/~ f) is needed. The net effects is that these two 
competing tendencies essentially cancel, thus rendering the H2 and D2 reactive 
thresholds very similar. 

2. The HD case. We define mc = m n  and mB = mo = 2ran, as a result of which 
# = ] rnH, ~r ] = knD/# + ~ k/mn, nr~: = 2k/ffz, 6 = - ½ ,v/~-/6mH) nrx 2 and noticing 
that ~rx ~ nrr and 6 ~ ~rr, we obtain 

~2 

~2 
~ 7  ~ _ ~,#, 

2~.~.~ = (7, + ~ " - ' ~ - ~  71 ~+ ~_j - ~ _  ~ - , - ~ 3  2 ~;~ 

+(-71 ~"-'~-~.~7' ~"-~' - \ ~ - ~ )  + t ~  ~- ) )  <~>, 

+(71 r~ ~ + ~ 7  ' ~, ~ 2  
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Neglecting terms in 6 2/(nrr 2 - nrxZ), co 2 _ ~ nrx 2 and ~oz+ ~ nr~. Thus 

, , 1  2 l ( f l ~  2 

- .~co------U-_ + ~ o A  

Similarly, 

= + 

More explicitly, 

hrff_ rf 
(R2n)  ~ ~ + 

hrl ( f  
(RAD) ~ ~ + 

~/2krh 

hn~ e 
+ 

hn~  f 

h r/e-f f F _4 ~3 hq~ f 
5 9N/ 2 x/(kBc + -~ k)mn 

hrl qf ± 1_. /~_ hrl~ f 

7- 9V2  ~/(k.c  + ~ k)mri" 

Thus, for any given excess energy E -- F(XA) (i.e., q}ff), (R~a~) will exceed (R2D). 
The fact that (R2n)  > (R2D) implies that the AH bond is stretched more than 

AD bond at any excess energy. Alternatively one can conclude that less total energy 
is needed to "break" (i.e., to effect T - V  transfer and extend to or beyond some 
critical distance) the AH bond, so the threshold for which H departs leaving AD + 
should be lower than that when D departs leaving MH +. Indeed experimentally, 
AD + is observed to form at lower collision energies than AH +. 

4. Summary 

We have introduced a model dynamics to use in treating the T - V  energy transfer 
process that seems to be the rate-limiting step in the M + + Hz ~ MH  + + H 
reaction, with M = B, AI, Ga. In applying this model, we: 

(1) Fit our fully ab initio M + + H2 potential energy surfaces (with M = B, A1, Ga) 
to a two-dimensional model potential form. 
(2) Show how to extract from local surface curvature information the range (a) and 
strength (v) parameters needed to use the model put forth here in a predictive 
manner. 
(3) Used this model potential within a purely classical trajectory study to conclude 
that collisional-to-vibrational energy transfer thresholds seem to correlate reason- 
ably well with experimental reaction thresholds for the M + + HE, Dz, H D  cases 
at hand. 

However, this classical treatment of the model displayed significantly lower 
thresholds for M ÷ + D2 excitation than for M ÷ + Hz, and it was not of adequate 
detail to treat the M + + HD ~ M H +, MD ÷ threshold asymmetry. Therefore, we: 
(4) Introduced a locally quadratic approximation to the potential surface to effect 
a quantal analysis of the T -V  energy transfer process, which suggests facile transfer 
occurs in regions of the potential surface where certain resonance conditions 
are met. 
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(5) In t roduced  a coupled three-a tom classical dynamics model  to examine internal 
mean  square displacements in these energized M + H D  transient species formed via 
T - V  energy transfer, that  allowed us to suggest (i) why M D  ÷ is formed at consider- 
ably lower collision energies than  M H  ÷ in the M ÷ + H D  reactions, and (ii) why 
the M + + H2 and  M ÷ + D 2 reaction thresholds are very similar a l though the 
M + D 2  T - V  excitation thresholds are lower than those for M÷H2.  
(6) Showed that  the probabi l i ty  of T - V  transfer varies as hF2K2/cor 
( = h b 2 / ~ ) ,  which is a small number,  in agreement  with the small 
cross-sections seen experimentally. 

In  future applications, we foresee our  model  dynamics being used in either of 
two modes:  

1. F r o m  locally compu ted  potential  surface information (which is assumed to be 
repulsive a long one coordina te  x, and reasonably harmonic  along another  y), the 
strength v and range (a or  F)  parameters  are extracted. Threshold energies can then 
be predicted, F(XA) = eZFo = eZco2/F 2 = 0.722co~,n~/a 2, in terms of the frequency 
of the BC mode  to be excited, the mass n~, and the repulsive range parameter  a. 
2. Alternatively, given experimental knowledge of (T -V  rate limited) reaction 
threshold energies F(XA), one can estimate the repulsive range parameter  
a = (eZ(1.53)2co2ffl/F(XA)) 1/2 for various isotopic B - C  species (for which n~, coy, and 
F(XA) vary). The  same range parameter  a should be determined for all isotopes. 
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